

ReliaWind & Supergen Wind EWEC2010 Side Event

Towards the Offshore Wind Power Station

Prof Peter Tavner

School of Engineering and Computing Sciences Durham University

2 Projects

- ReliaWind, EU FP7
 - 8 Industrial Partners, 2 Academic Partners representing full WT value chain.
 - To achieve European technological leadership in WT reliability, availability & maintenance.
 - A fast track (36-months) project: start March 2008, finish March 2011.
 - Strongly results-oriented, 81 deliverables, 20 delivered to date.
 - Budget of €7,7M.
 - Proposed EC contribution of a maximum of €5,1M.
- Supergen Wind, UK EPSRC, Phase 1
 - 8 Academic Partners, 8 Industrial Partners
 - 48-month project: start March 2006, finish March 2010, £2.55M budget.
 - To undertake research to improve the cost effective reliability & availability of existing and future large scale wind turbine systems in the UK.
 - 35 Deliverables completed on time.
- Supergen Wind, UK EPSRC, Phase 2
 - 6 Academic Partners, 10 Industrial Partners
 - 48-month project: start March 2010, finish March 2014, £4.85M budget.
 - To undertake research to achieve an integrated, cost-effective, reliable & available Offshore Wind Power Station
 - 30 Deliverables.

ReliaWind

Project Architecture

Relia Wind

Integration of Technologies, Methods and Applications

Supervisory control, diagnosis-prognosis algorithms, action logic & communications

Sensors, measurements, signals conditioning and processing

System, component and parts Reliability Engineering

Management & Coordination

Quantitative Objectives

Mean Time Between Failures (MTBF):

- Offshore: 20% increase
- Onshore: 10% increase
- Mean Time to Repair (MTTR)
 - Offshore: 50% reduction
 - Onshore: 20% reduction
- Operational Availability (%)
 - Offshore availability: 97-98%, (currently 85-90%)
 - Onshore availability: 98-99% (currently 97-98%)

Cost of Energy (CoE): < 0.04 €/kWh</p>

Relia Wind

Project Consortium

Relia Wind

Research Institutions: SZTAKI Durham Components Manufacturers: LM Glasfiber Hansen ABB SKF Garrad Hassan

WT Manufacturers: Alstom Wind Power Gamesa

Wind Farm Owners

Reliability Software Firm Relex PTC

Partner Responsibility

System / Component	Responsible Partner		
Pitch System (Electrical & Hydraulic)	Alstom Wind Power– Gamesa		
Blades	LM Glasfiber		
Blade Bearings	SKF		
Gearbox	Hansen & SKF		
Hub, Main shaft, Main frame, Rear structure, Cover, Tower, Foundation, Yaw system	Alstom Wind Power		
Converter, Transformer, Switch Gear, Generator	ABB		
Control	Garrad Hassan - Gamesa		
Auxiliary Equipment	Gamesa		
Wind Farm Systems	Gamesa		

Work Programme

Relia Wind

Objectives and associated work plan		WP-1	WP-2	WP-3	WP-4	WP-5	WP-6
Objective 1	To identify Critical Failures and Components	Field Reliability Analysis					
Objective 2	To understand Failures and Their Mechanisms		Design for Reliability				
Objective 3	To define the Architecture of a Health Monitoring System			Algorithms			
Objective 4	To demonstrate the Principles of the Project Findings				Applications		
Objective 5	To train internal and external partners					Training	
Objective 6	To disseminate the new knowledge through Conferences, Workshops, Web Site and Media						Dissemination

Dissemination

- Published 7 Journal Papers, 20 Conference Papers
- Organised 9 Training Seminars
- High profile at EWEC 2010
- <u>http://www.reliawind.eu/</u>

Relia*Wind*

Supergen Wind 1

Academic partners

Industrial partners

Research Programme

- Theme W: Base-lining Turbine Performance
- Theme X: Condition Monitoring
- Theme Y: Loads & Materials
- Theme Z: Environmental Issues

Theme W Achievements

- Produced the most comprehensive analysis of turbine sub-system failures
- Wind turbine and wind farm availability models developed and effect of different parameters on failure rates studied
- Comprehensive wind tunnel measurements made of multiple turbine wakes for different array configurations
- CFD models of forest canopies validated against wind tunnel scale measurements

Theme X Achievements

- Identified how condition monitoring can improve turbine availability
- Developed of a detailed DFIG analytic model capable of modelling healthy and faulty states
- State of the art Condition Monitoring Test Rigs built and operational
- Detection of faults on the test rig using electrical signals
- Developed and demonstrated algorithms for tracking fault frequencies in variable speed turbines

Theme Y Achievements

- Development of a two wake interaction model
- Investigated and tested new composite materials to improve blade strength and durability (hybrid veil and fibre toughened resins for shear web integration)
- Fully parametric blade model (including novel materials, quasistatic aerodynamics, certification test loads)
- Active regulation of tower and rotor loads with reductions up to 50%.

Theme Z Achievements

- New methods have been developed to support prediction and reduction of scour around monopiles
- The issues of lightning protection and radar cross-section have been addressed together for the first time
- Computationally efficient models of turbine and array have been developed for investigation of above
- New materials to improve former and reduce latter have been developed

Recent Modelling Results

FEA Modelling - 2

Field Enhancement at Blades and Windvane

People Training

- 3 PhDs and 2 RAs are now working in wind related companies, Garrad Hassan(2), NaREC, Samtech, MLS
- 3 PhDs awaiting viva or preparing theses.
- 7 RAs and 7 PhDs (include 4 DTA) receiving training;
- Training events included
 - Attendance at two EAWE PhD Workshops (Pamplona 2007, Magdeburg 2008) in Europe and one hosted in UK (Durham 2009)
 - Three Supergen Wind Training Seminars held.
 - Consortium researchers participated in the UKERC Conference, Oxford UK, May 2008.
 - > Training by host institutions in research and communication skills.

Dissemination

- Published 24 Journal, 58 Conference papers
- Organised 8 Workshops, including 3 training seminars
- High profile at EWEC
 EWEC2008: 2 Oral Presentations + 4 Posters Including Best Poster
 EWEC2009: 3 Oral Presentations + 6 Poster Presentations
 EWEC2010: 3 Oral Presentations + 7 Poster Presentations
- <u>http://www.supergen-wind.org.uk</u>

International Connectivity

- Members of European Wind Energy Academy
 - Tavner is Vice-President 2009-2010
- Members of various European projects
 - Loughborough: EAWE Marie Curie WAUDIT Initital Training Network
 - Durham: EU FP7 RELIAWIND
- Members of EPSRC UK-China Energy Research Collaboration
 - Durham: Future Renewable Energy Conversion Systems & Networks Consortium
 - Strathclyde: Sustainable Electric Power Supply Consortium
- Participation in EU Wind Technology Platform (Strathclyde)
- Associate partner NOWITECH Norwegian Research Centre for Offshore Wind Technology (Strathclyde)
- Participation in EERA Wind Energy Initiative (Strathclyde)

Supergen Wind 2

Research Programme

Training Scheme

- The Scheme will function not only for training, but as a forum for RAs and students to communicate and develop.
- Requirements based.
- Two days events, every six months.

Thank you Side Event is an opportunity for you to see the outcomes of these two important projects

Relia Wind